

Equations

current = $\frac{\text{voltage}}{\text{resistance}}$	$I = \frac{V}{R}$
total resistance in a series circuit	$R = R_1 + R_2$
energy transferred = power \times time	$E = Pt$
power = voltage \times current	$P = VI$
% efficiency = $\frac{\text{energy [or power] usefully transferred}}{\text{total energy [or power] supplied}} \times 100$	
density = $\frac{\text{mass}}{\text{volume}}$	$\rho = \frac{m}{V}$
units used (kWh) = power (kW) \times time (h) cost = units used \times cost per unit	
wave speed = wavelength \times frequency	$v = \lambda f$
speed = $\frac{\text{distance}}{\text{time}}$	
pressure = $\frac{\text{force}}{\text{area}}$	$p = \frac{F}{A}$
change in thermal energy = mass \times specific heat capacity \times change in temperature	$\Delta Q = mc\Delta\theta$
thermal energy for a change of state = mass \times specific latent heat	$Q = mL$
V_1 = voltage across the primary coil V_2 = voltage across the secondary coil N_1 = number of turns on the primary coil N_2 = number of turns on the secondary coil	$\frac{V_1}{V_2} = \frac{N_1}{N_2}$

SI multipliers

Prefix	Multiplier
m	1×10^{-3}
k	1×10^3
M	1×10^6

Equations

current = $\frac{\text{voltage}}{\text{resistance}}$	$I = \frac{V}{R}$
total resistance in a series circuit	$R = R_1 + R_2$
total resistance in a parallel circuit	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$
energy transferred = power \times time	$E = Pt$
power = voltage \times current	$P = VI$
power = current ² \times resistance	$P = I^2R$
% efficiency = $\frac{\text{energy [or power] usefully transferred}}{\text{total energy [or power] supplied}} \times 100$	
density = $\frac{\text{mass}}{\text{volume}}$	$\rho = \frac{m}{V}$
units used (kWh) = power (kW) \times time (h) cost = units used \times cost per unit	
wave speed = wavelength \times frequency	$v = \lambda f$
speed = $\frac{\text{distance}}{\text{time}}$	
pressure = $\frac{\text{force}}{\text{area}}$	$p = \frac{F}{A}$
p = pressure V = volume T = kelvin temperature	$\frac{pV}{T} = \text{constant}$
	$T / \text{K} = \theta / {}^\circ\text{C} + 273$
change in thermal energy = mass \times specific heat capacity \times change in temperature	$\Delta Q = mc\Delta\theta$
thermal energy for a change of state = mass \times specific latent heat	$Q = mL$
force on a conductor (at right angles to a magnetic field) carrying a current = magnetic field strength \times current \times length	$F = BIl$
V_1 = voltage across the primary coil V_2 = voltage across the secondary coil N_1 = number of turns on the primary coil N_2 = number of turns on the secondary coil	$\frac{V_1}{V_2} = \frac{N_1}{N_2}$

SI multipliers

Prefix	Multiplier
p	1×10^{-12}
n	1×10^{-9}
μ	1×10^{-6}
m	1×10^{-3}

Prefix	Multiplier
k	1×10^3
M	1×10^6
G	1×10^9
T	1×10^{12}

Equations

speed = $\frac{\text{distance}}{\text{time}}$	
acceleration [or deceleration] = $\frac{\text{change in velocity}}{\text{time}}$	$a = \frac{\Delta v}{t}$
acceleration = gradient of a velocity-time graph	
resultant force = mass \times acceleration	$F = ma$
weight = mass \times gravitational field strength	$W = mg$
work = force \times distance	$W = Fd$
force = spring constant \times extension	$F = kx$
momentum = mass \times velocity	$p = mv$
force = $\frac{\text{change in momentum}}{\text{time}}$	$F = \frac{\Delta p}{t}$
u = initial velocity v = final velocity t = time a = acceleration x = displacement	$v = u + at$ $x = \frac{u + v}{2} t$
moment = force \times distance	$M = Fd$

SI multipliers

Prefix	Multiplier
m	1×10^{-3}
k	1×10^3
M	1×10^6

Equations

speed = $\frac{\text{distance}}{\text{time}}$	
acceleration [or deceleration] = $\frac{\text{change in velocity}}{\text{time}}$	$a = \frac{\Delta v}{t}$
acceleration = gradient of a velocity-time graph	
distance travelled = area under a velocity-time graph	
resultant force = mass \times acceleration	$F = ma$
weight = mass \times gravitational field strength	$W = mg$
work = force \times distance	$W = Fd$
kinetic energy = $\frac{\text{mass} \times \text{velocity}^2}{2}$	$KE = \frac{1}{2}mv^2$
change in potential energy = mass \times gravitational field strength \times change in height	$PE = mgh$
force = spring constant \times extension	$F = kx$
work done in stretching = area under a force-extension graph	$W = \frac{1}{2}Fx$
momentum = mass \times velocity	$p = mv$
force = $\frac{\text{change in momentum}}{\text{time}}$	$F = \frac{\Delta p}{t}$
u = initial velocity v = final velocity t = time a = acceleration x = displacement	$v = u + at$ $x = \frac{u + v}{2}t$ $x = ut + \frac{1}{2}at^2$ $v^2 = u^2 + 2ax$
moment = force \times distance	$M = Fd$

SI multipliers

Prefix	Multiplier
p	1×10^{-12}
n	1×10^{-9}
μ	1×10^{-6}
m	1×10^{-3}

Prefix	Multiplier
k	1×10^3
M	1×10^6
G	1×10^9
T	1×10^{12}