

May–June 2025 Assessment Window

Paper
reference

1PH0 1SC0

**GCSE Physics and
GCSE Combined Science (Physics)
Equations List**

You are not permitted to take this notice into the examination.
A version of this equation list will be included with the May–June 2025
question papers. This document is valid if downloaded from the [Pearson
Qualifications website](#).

W84389A

©2025 Pearson Education Ltd.
1/

Continue ►

Pearson

If you're taking **GCSE (9–1) Combined Science** or **GCSE (9–1) Physics**, you will need these equations:

HT = higher tier

distance travelled = average speed \times time	
acceleration = change in velocity \div time taken	$a = \frac{(v-u)}{t}$
force = mass \times acceleration	$F = m \times a$
weight = mass \times gravitational field strength	$W = m \times g$
HT momentum = mass \times velocity	$p = m \times v$
change in gravitational potential energy = mass \times gravitational field strength \times change in vertical height	$\Delta GPE = m \times g \times \Delta h$
kinetic energy = $1/2 \times$ mass \times (speed) 2	$KE = \frac{1}{2} \times m \times v^2$
efficiency = $\frac{(\text{useful energy transferred by the device})}{(\text{total energy supplied to the device})}$	
wave speed = frequency \times wavelength	$v = f \times \lambda$
wave speed = distance \div time	$v = \frac{x}{t}$
work done = force \times distance moved in the direction of the force	$E = F \times d$
power = work done \div time taken	$P = \frac{E}{t}$
energy transferred = charge moved \times potential difference	$E = Q \times V$
charge = current \times time	$Q = I \times t$
potential difference = current \times resistance	$V = I \times R$
power = energy transferred \div time taken	$P = \frac{E}{t}$
electrical power = current \times potential difference	$P = I \times V$
electrical power = (current) $^2 \times$ resistance	$P = I^2 \times R$
density = mass \div volume	$\rho = \frac{m}{V}$

force exerted on a spring = spring constant \times extension	$F = k \times x$
(final velocity) ² – (initial velocity) ² = 2 \times acceleration \times distance	$v^2 - u^2 = 2 \times a \times x$
HT force = change in momentum \div time	$F = \frac{(mv - mu)}{t}$
energy transferred = current \times potential difference \times time	$E = I \times V \times t$
HT force on a conductor at right angles to a magnetic field carrying a current = magnetic flux density \times current \times length	$F = B \times I \times l$
For transformers with 100% efficiency, potential difference across primary coil \times current in primary coil = potential difference across secondary coil \times current in secondary coil	$V_p \times I_p = V_s \times I_s$
change in thermal energy = mass \times specific heat capacity \times change in temperature	$\Delta Q = m \times c \times \Delta \theta$
thermal energy for a change of state = mass \times specific latent heat	$Q = m \times L$
energy transferred in stretching = 0.5 \times spring constant \times (extension) ²	$E = \frac{1}{2} \times k \times x^2$

If you're taking **GCSE (9–1) Physics**, you also need these extra equations:

moment of a force = force \times distance normal to the direction of the force	
pressure = force normal to surface \div area of surface	$P = \frac{F}{A}$
HT $\frac{\text{potential difference across primary coil}}{\text{potential difference across secondary coil}} = \frac{\text{number of turns in primary coil}}{\text{number of turns in secondary coil}}$	$\frac{V_p}{V_s} = \frac{N_p}{N_s}$
to calculate pressure or volume for gases of fixed mass at constant temperature	$P_1 \times V_1 = P_2 \times V_2$
HT pressure due to a column of liquid = height of column \times density of liquid \times gravitational field strength	$P = h \times \rho \times g$

END OF EQUATION LIST